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Note 

Numerical Divergence of a Tensor* 

The finite-difference expressions which can be written to approximate a partial 
differential equation (to a given order) are not uniquely determined by the original 
partial differential equation. In three dimensions the divergence of a vector can be 
written as a six-point finite-difference function, i.e., a function of the six nearest 
neighbor points. This is true on any coordinate grid. The finite-difference expression 
for the divergence of a tensor is a six-point function on a Cartesian grid, but appears 
to be a seven-point function (involving the central point) on other grids. In some 
numerical schemes (such as leapfrog), each quantity is defined only on certain grid 
points. For example, if the tensor represents a flux through a cell wall, it may not be 
well defined at the cell center. To obtain the tensor at that point a spatial average can 
be performed. However, it is not clear how best to take an average of a tensor on a 
non-Cartesian grid. Alternatively, in a restricted class of leapfrog-type schemes a 
temporal average may be utilized. 

For analytic work it is natural to choose derivatives and tensor or vector 
components in the same coordinate system. This leads to the seven-point function. 
The central term arises to cancel the effects of basis vectors whose direction is position 
dependent. We will show that for numerical work, a Cartesian basis for the uncon- 
tracted components of the tensor yields a six-point function which avoids the am- 
biguity created by the seven-point function. This technique is equivalent to choosing 
a particular technique for averaging a tensor on a non-Cartesian grid. 

Before proceeding with a genera1 proof, we illustrate the technique by discussing 
the divergence of both a vector and a tensor on a two-dimensional polar grid. 

ILLUSTRATIONS 

For the divergence of a vector, it is straightforward to avoid the central (undif- 
ferentiated) terms. For example, consider a polar coordinate system. The non-zero 
elements of the metric tensor [l-4] are 

g,, = grv = I) g,, = r2, gss = rp2, 

giving 

g = gT,gao = r 
2 

. 

* The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the copy- 
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The physical component (denoted by an asterisk) as well as the covariant and contra- 
variant components of vector A are related by [l] 

A: = A, z A’, A; -z A,+ :A A’/-. 

The vector divergence is given by [l] 

’ 1 

V . A = f$ + 
I 1 
ki, A”, 

where the Christoffel symbol is defined as 

(1) 

(2) 

The Einstein summation convention is used here and throughout this paper. In polar 
coordinates the only nonzero Christoffel symbols are 

Thus (1) becomes 

i?A’ i3Ae 
V.A=ir+x+$ 

The last term, a nondifferentiated component, is the type we wish to avoid. In this case 
it can be readily avoided by rewriting (4) as 

1 a 
V . A = v ar (rA’) + 

l3A0 la 
~ = r ar (rAT) + k Y$ AZ, ae 

which also comes from 

1 a 
V . A z _ 1 (gW'&), 

g 112 8x3 

Both Eqs. (1) and (6) appear in the tensor analysis textbooks, and they are analy- 
tically equivalent. However the form of Eq. (6) leads more naturally to a six-point 
finite-difference expression, while Eq. (1) leads more naturally to a seven-point 
expression. 

This simple device for incorporating nondifferentiated terms into an existing 
derivative term is not completely successful for tensors of rank 2 or higher. The 
divergence of a second rank tensor is given by [l] 
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Here the last two terms contain an undifferentiated tensor, and are therefore of the 
type we wish to eliminate. The first of these can be trivially incorporated into the 
derivative term as was done for the vector case. The last term requires the additional 
technique developed below. 

To illustrate the technique, we choose polar coordinates and write the tensor as a 
dyadic 

T”j x uiv’ 

This gives 

The third term in Eqs. (8a) and (8b) can be incorporated under a derivative, yielding 

(9b) 

Strictly within the polar system it is not possible to incorporate the remaining terms. 
However, if we introduce Cartesian components for v 

and 

V, = 21: cos 0 - v,” sin e (104 

then 

V, = v,* sin e + Z$ cos e (lob) 

and 

(V . T),* = cos e(v . T)z + sin e(v . T), (1 la) 

where 
(\J . T>B* = - sin Sp T)z + cos e(v . T), , (lib) 

and 

Equations (IO)-(12) contain only differentiated expressions for u and t’; thus, if 
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the derivatives in Eqs. (12) are expressed as centered differences, they achieve our 
stated objective. In those cases where o and V T can be expressed throughout the 
problem in Cartesian components, Eqs. (10) and (11) are not necessary. 

THEOREM AND PROOF 

The divergence of a tensor can always be written in an analytic form which leads to a 
six-point jinite-difference expression on any three-dimensional grid. 

Proof. The divergence of a tensor of covariant rank m and contravariant rank 
n + 1 is given by [l] 

Except for the first term, the right-hand side of Eq. (13) requires evaluating Tat the 
central point. To avoid this, one starts by transforming to Cartesian coordinates Pi 
and PI, where the bar denotes Cartesian space. If we let 

(14) 
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The final factor in the last term can be reexpressed by noting that the transformation 
law for Christoffel symbols is [l] 

(15) 

But, if the i, j, k are in Cartesian space, then {x} = 0 and 

Therefore 

or 

S”““” /3,.,.a, = 

In either case the divergence has been written as a sum of derivative terms. 

CONCLUSION 

By the simple device of expressing the uncontracted components of a tensor in 
Cartesian components, a finite difference form for the divergence of a tensor can be 
written (Eq. (17) or (18)) as a six-point function. This function utilizes values of the 
tensor at the six nearest neighbor points, but not at the central point of the difference 
scheme. The technique, in the form of Eqs. (lo)-( 12) has proven useful in solving the 
ideal MHD equations in toroidal geometry [5] when applied to the stress tensor. 
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